Showing posts with label mensuration. Show all posts

Perimeter of a Triangle

Perimeter of a Triangle

 

Introduction

 

What is the Perimeter of a Triangle?

 

The perimeter of a triangle is the total length of its boundary, calculated by adding up the lengths of its three sides. It’s a simple yet vital concept in mensuration and geometry that lays the foundation for more advanced topics.

How to Find Perimeter?

How to Find Perimeter?

 

Introduction

 

The concept of perimeter is fundamental in geometry and mensuration. Whether you are planning a DIY project, fencing your garden, or helping your child with math homework, understanding of how to calculate the perimeter is an essential skill. Here, in this article, we will break down the process of finding the perimeter, cover formulas for various shapes, and provide practical examples to help you get a solid grasp on this concept.

Pyramid

Pyramid

Pyramid

Pyramids are three dimensional figure like a prism. It is a solid with polygonal base and triangular lateral faces meeting at a common point called vertex or apex. This figure has fascinated human beings from the ancient times. Pyramid of Egypt are one of then seven wonders of the world. These pyramids were built during the period 3000 - 2000 B.C.

Volume of a Cone

Volume of a Cone

Volume of a Cone

Volume of a cone is given by the one third of the product of its area of base and height i.e. volume of cone =  Ï€r2h/3. This formula can be understood and derived by the following activity:
Experiment to find the volume of a cone
1.     Take a hollow cylindrical jar of radius r and height h, whose volume is Ï€r2h.
2.     Take a hollow cone which has the same height h and same radius r.
3.     Fill the cone with water and pour into the jar. And repeat it.


********************


10 Math Problems officially announces the release of Quick Math Solver and 10 Math ProblemsApps on Google Play Store for students around the world.


Install Quick Math Solver

********************


Install 10 Math Problems


********************



In this activity, the cylindrical jar will be full filled with water when 3 cones of full water is pour into it. It shows that,

3 × Volume of cone = Volumeof the cylinder
or,       Volume of cone = 1/3 × Volume of the cylinder
                                     = 1/3 × Ï€r2h
                                     = Ï€r2h/3

Volume of a cone = πr2h/3

Workout Examples

Example 1: Find the volume of a cone whose radius = 4 cm and height = 21 cm.
Example 1 Cone
Solution: Here,
                           Radius (r) = 4 cm
                           Height (h) = 21 cm

                We know,
                           Volume of a cone = Ï€r2h/3
                                                          = 1/3 × 22/7 × 42 × 21
                                                          = 352 cm3

                Thus, the volume of the cone is 352 cm3.


Example 2: The vertical height of a right circular cone is three times its diameter and its volume is 54Ï€ cm3. Find its height.

Solution: Here,
                           Let, the diameter of cone be d.     d = 2r
                           Then, height (h) = 3d = 3 × 2r = 6r
                           Given, volume of cone = 54Ï€ cm3
                i.e.      Ï€r2h/3 = 54Ï€
                or,      r2h/3 = 54
                or,      r2 × 6r = 162
                or,      6r3 = 162
                or,      r3 = 162/6
                or,      r3 = 27
                or,      r3 = 33
                or,      r = 3 cm

                Thus, height (h) = 6r = 6 × 3 cm = 18 cm.


Example 3: Calculate the volume of adjoining solid given in the figure.
Example 3 Combined solid
Solution: Here,
                           The given figure is a combined solid of two cones.
                           Radius of both the cones (r) = 42 cm
                           Total height of the solid = 180 cm
                           Let the height of upper cone be h1 and the height of lower cone be h2.
                           So, h1 + h2 = 180 cm

                We know,
                           Volume of the solid = V(upper cone) + V(lower cone)
                                                             = Ï€r2h1/3 + Ï€r2h2/3
                                                             = Ï€r2(h1 + h2)/3
                                                             = 1/3 × 22/7 × 422 × 180     [  h1 + h2 = 180 cm]
                                                             = 332640 cm3

                Thus, the volume of the solid is 332640 cm3.


You can comment your questions or problems regarding the volume of a cone here.

Surface Area of a Cone

Surface Area of a Cone


Surface Area of a Cone

 

A cone is a pyramid with a circular base. A solid cone has two types of surfaces, one is the curved surface around the cone and another is the plane surface of its circular base.

Cone

Cone

Cone

A cone is a pyramid with circular base. Take a circular piece of paper with centre O. cut off the sector APB and join the edges AO and BO. In this way a pyramid with a circular base is formed which is called a circular pyramid or a cone.
making of cone
A cone has a curved surface and a circular base. In the figure given below, O is the centre of the circular base, OA is the radius (r), OP is the vertical height (h) of the cone and PA is the slant height (l).
different parts of cone
In right angled triangle AOP, using Pythagoras Theorem,
slant height, vertical height and radius


********************


10 Math Problems officially announces the release of Quick Math Solver and 10 Math ProblemsApps on Google Play Store for students around the world.


Install Quick Math Solver

********************


Install 10 Math Problems

********************



Surface Area and Volume of Cone

A cone is formed from the sector of a circle. So its curved surface area is the surface of the sector.
1.  The curved surface area of a cone = Area of the sector = Ï€rl, where r is the radius of the circular base and l is the slant height.
2.  The total surface area of a cone = curved surface area + area of circular base
                                                        = Ï€rl + Ï€r2
                                                        = Ï€r (r + l)
3.  Volume of the cone = volume of the circular pyramid
                                        = 1/3 of area of circular base × height
                                        = 1/3 × Ï€r2 × h
                                        = Ï€r2h/3

Workout Examples

Example 1: Calculate the curved sirface area, total surface area and volume of the given cone.
Solution: Here,
                                Height of cone (h) = 8 cm
                                Slant height (l) = 10 cm 
radius of cone

                Now,
                                Curved surface area (CSA) = Ï€rl
                                                                               = 22/7 × 6 × 10
                                                                               = 188.57 cm2

                                Total surface area (TSA) = Ï€r(r + l)
                                                                           = 22/7 × 6 (6 + 10)
                                                                           = 301.71 cm2

                                Volume of cone (V) = Ï€r2h/3
                      = 1/3 × 22/7 × 62 × 8
                      = 22/21 × 36 × 8
                      = 301.71 cm3


Example 2: If the total surface area of a cone is 704 cm2 and radius of its base is 7 cm, find the volume of the cone.

Solution: Here,
                           Radius of cone (r) = 7 cm
                           Total surface area of cone = 704 cm2
                i.e.      Ï€r (r + l) = 704
                or,      22/7 × 7 (7 + l) = 704
                or,      22 (7 + l) = 704
                or,      154 + 22l = 704
                or,      22l = 704 – 154
                or,      l = 550/22
                or,      l = 25 cm
vertical height of cone

Now,
                Volume of cone (V) = Ï€r2h/3
       = 1/3 × 22/7 × 72 × 24
       = 1232 cm3


Example 3: If the volume of the given cone is 1848 cm3, and the radius of its base is 14 cm, find its curved surface area.
example 3 cone
Solution: Here,
                           Radius of cone (r) = 14 cm
                           Volume of cone = 1848 cm3
                i.e.      Ï€r2h/3  = 1848
                or,      1/3 × 22/7 × 142 × h = 1848
                or,      22/21 × 196 × h = 1848
                or,      h = 1848 × 21/4312
                or,      h = 9 cm               
slant height of cone

Now,
                Curved surface area of cone (CSA) = Ï€rl
                                                                             = 22/7 × 14 × 16.64
                                                                             = 732.16 cm2


You can comment your questions or problems regarding the surface area and volume of cone here.

Hemisphere

Hemisphere

Hemisphere

Hemisphere is half of a sphere. When a sphere is divided equally into two parts, each part is called hemisphere. It has two types of surfaces, one is circular face (great circle) and another is curved surface. The radius of hemisphere is equal to the radius of sphere.

********************


10 Math Problems officially announces the release of Quick Math Solver and 10 Math ProblemsApps on Google Play Store for students around the world.


Install Quick Math Solver

********************


Install 10 Math Problems


********************


Sphere and hemisphere

Total Surface Area of a Hemisphere

Total surface area of a hemisphere is the sum of its area of curved surface and the area of circular face (great circle). Area of curved surface of a hemisphere is the half of the total surface area of a sphere.

So, area of curved surface of a hemisphere = ½ of total surface area of the sphere
                                                                      = ½ × 4Ï€r2
                                                                      = 2Ï€r2

And, area of circular face (great circle) = πr2
Total Surface Area a of Hemisphere
Now,
Total surface area of hemisphere = area of curved surface + area of circular face
                                                      = 2Ï€r2 + Ï€r2
                                                      = 3Ï€r2

   Total surface of hemisphere = 3Ï€r2

Volume of a Hemisphere

To find the volume of a hemisphere, we can do the following activity:
Activity to find the volume of hemisphere
-    Take a cylindrical vessel circumscribing a plastic spherical ball as given in the figure above.
-    Take out the spherical ball from the cylinder and cut it into two equal parts. In this way we will get two hemispheres of plastic ball.
-    Fill a hemisphere with rice or sand and pour it into the cylinder. And repeat it again.
-    Then we will find that the cylinder will be full filled by 3 hemispheres.

Thus, the volume of 3 hemisphere = volume of 1 cylinder  
                                                        = Ï€r2h    [ volume of cylinder = Ï€r2h]
                                                        = Ï€r2 × d    [ h = d]
                                                        = Ï€r2 × 2r    [ d = 2r]
                                                        = 2Ï€r3
             Volume of 1 hemisphere = 2Ï€r3/3

Thus, the volume of a hemisphere = 2Ï€r3/3

Workout Examples

Example 1: Find the total surface area and the volume of a hemisphere of radius 3.5cm.
Example 1: Hemisphere

Solution: Here, radius of hemisphere (r) = 3.5cm
                Now,
                         Total surface area of hemisphere = 3Ï€r2
                                                                                  = 3 × 22/7 × (3.5)2
                                                                                  = 115.50cm2

                         Volume of hemisphere = 2Ï€r3/3
                                                                 = 2/3 × 22/7 × (3.5)3
                                                                 = 89.83cm3

                Thus, total surface area is 115.50cm2 and the volume is 89.83cm3.


Example 2: The circumference of the edge of a hemispherical bowl is 132cm. Find the capacity of the bowl.

Solution: Here, circumference = 132cm
                i.e.      2Ï€r = 132
                or,      2 × 22/7 × r = 132
                or,      r = 132 × 7/44
                or,      r = 21cm

                Now,
                          The capacity of the bowl = 2Ï€r3/3
                                                                     = 2/3 × 22/7 × (21)3
                                                                     = 19404cm3  
         
                Thus, the capacity of the bawl is 19404cm3.


Example 3: Find the total surface area and the volume of the given combined solid figure.
Example 3: Combined solid

Solution: Here, the given combined solid figure is a cylinder and a hemisphere,
    radius (r) = 7cm
    height (h) = 10cm

                Now,
                         Total surface area of solid = 2Ï€r2 + 2Ï€rh + Ï€r2
                                                                       = 3Ï€r2 + 2Ï€rh
                                                                       = 3 × 22/7 × (7)2 + 2 × 22/7 × 7 × 10
                                                                       = 462 + 440
                                                                       = 902cm2

                         Volume of solid = Ï€r2h + 2Ï€r3/3
                                                     = 22/7 × 72 × 10 + 2/3 × 22/7 × 73
                                                     = 1540 + 718.67
                                                     = 2258.67cm3

                Thus, total surface area is 902cm2 and the volume is 2258.67cm3.


You can comment your questions or problems regarding the surface area and volume of hemisphere here.