Chords and Circle Theorems on Chords

Chords and Circle Theorems on Chords

Chords and Circle Theorems on Chords   

The line segment joining any two points on the circumference of a circle is called the chord of the circle. In the figure given below: AB, CD and EF are the chords. AB is also the diameter. Diameter is the longest chord.



********************


10 Math Problems officially announces the release of Quick Math Solver and 10 Math ProblemsApps on Google Play Store for students around the world.


Install Quick Math Solver



********************


Install 10 Math Problems




********************


AB, CD and EF are the chords


Circle Theorems on Chords

1.    In a circle, a perpendicular from the centre to its chord, bisect the chord.

2.    Equal chords of a circle are equidistant from the centre of the circle.

Proofs:

1.   In a circle, a perpendicular from the centre to its chord, bisect the chord.

Given: O is the centre of circle and OM is perpendicular to chord AB.

           Given: O is the centre of circle and OM is perpendicular to chord AB.

           To Prove: AM = BM

           Construction: OA and OB are joined. 

           Proof:

                    Statements                            Reasons

 1.    In DAOM and DBOM

 i.     āˆ AMO = ∠BMO (R) --------> Both are right angles; OM⊄AB

 ii.    OA = OB (H) --------------> Radii of the same circle

 iii.   OM = OM (S) --------------> Common side

 2.    DAOM ≅DBOM -----------------> By RHS axiom

 3.    AM = BM -----------------> Corresponding sides of congruent triangles.

                                                                                               Proved.

Note: The converse of this theorem i.e. ā€œA straight line joining the centre of circle and mid-point of a chord is perpendicular to the chord.ā€ is also true.

2.   Equal chords of a circle are equidistant from the centre of the circle. 

           Given: O is the centre of the circle, chord AB = chord CD. OM⊄AB and ON⊄CD.

           To Prove: OM = ON

           Construction: OA and OC are joined. 

           Proof:

                     Statements                           Reasons

 1.    AM = AB/2 and CN = CD/2 ---> Perpendicular from centre to chord bisect it.

 2.    AB = CD ---------------------> By given

 3.    AM = CN --------------------> From statements 1 and 2

 4.    In DAMO and DCNO

  i.       āˆ AMO = ∠CNO (R) ---------> Both are right angles

  ii.     OA = OC (H) ---------------> Radii of the same circle

  iii.   AM = CN (S) ---------------> From statement 3.

 5.    DAMO ≅DCNO ------------------> By RHS axiom

 6.    OM = ON -----------------> Corresponding sides of congruent triangles.

                                                                                              Proved.

Note: The converse of this theorem i.e. ā€œChords which are at equidistant from the centre of a circle are equal in length.ā€ is also true.


Look at the following worked out examples:

Workout Examples

Example 1: In the figure, O is the centre of the circle and OM⊄AB. If OP = 10cm and OM = 6cm, find the length of the chord AB.

Example 1: In the figure, O is the centre of the circle and OM⊄AB. If OP = 10cm and OM = 6cm, find the length of the chord AB.

Solution: In the figure,

          OP = 10cm

          OA = 10cm [∵ Radii of same circle]

          OM = 6cm

In right angle triangle AOM, AM = √(怖OA怗^2-怖OM怗^2 ) = √(怖10怗^2-6^2 ) = √(100-36) = √64 = 8cm

          Now,

                   AB = 2 Ɨ AM [∵ Perpendicular bisects the chord]

                         = 2 Ɨ 8cm

                         = 16cm

 

Example 2: In the figure, O is the centre of the circle, chord AB = 6cm, chord CD = 12cm, OM⊄CD and ON⊄AB. Find the distance between the chords if the radius is 3√5cm.

Example 2: In the figure, O is the centre of the circle, chord AB = 6cm, chord CD = 12cm, OM⊄CD and ON⊄AB. Find the distance between the chords if the radius is 3√5cm.

Solution: In the figure,

          OP = OC = 3√5cm

          CM = CD/2 = 12/2 = 6cm

          AN = AB/2 = 6/2 = 3cm         

In right angle triangle AON, ON = √(怖OA怗^2-怖AN怗^2 ) = √(怖(3√5)怗^2-3^2 ) = √(45-9) = √36 = 6cm  and  In right angle triangle COM, OM = √(怖OC怗^2-怖CM怗^2 ) = √(怖(3√5)怗^2-6^2 ) = √(45-36) = √9 = 3cm

          Now,

                   MN = ON - OM

                         = 6 – 3 cm

                         = 3cm

          ∓ The distance between chords is 3cm.

 

Example 3: In the fugure O is the centre of the circle and DABC ≅ DDBC. Prove that OM is the bisector of ∠AMD.

Example 3: In the fugure O is the centre of the circle and DABC ≅ DDBC. Prove that OM is the bisector of ∠AMD.

Solution:

Given: In the figure O is the centre of the circle and DABC ≅ DDBC.

To Prove: OM is the bisector of ∠AMD.

Construction: OP⊄AC and OQ⊄BD are drawn.

Proof:

       Statements                                 Reasons

1.    AC = BD ---------> Corresponding sides of ≅ Ds ABC and BCD

2.    OP = OQ --------> Equal chords of a circle are equidistant from the centre.

3.    In DOPM and DOQM

i.        āˆ OPM = ∠OQM (R) ---------> Both are right angles

ii.      OM = OM (H) ----------> Common side

iii.     OP = OQ (S) -----------> From statement 2

4.    DOPM ≅ DOQM -------------> By RHS axiom

5.    ∠PMO = ∠QMO i.e.

∠AMO = ∠DMO ------------> Corresponding angles of ≅ triangles.

6.    OM is the bisector of ∠AMD --------------> From statement 5.

                                                                                  Proved.

 

Example 4: In the fugure O is the centre of the circle and PM = QN. Prove that DPOQ is an isosceles triangle.

Example 4: In the fugure O is the centre of the circle and PM = QN. Prove that DPOQ is an isosceles triangle.

Solution:

Given: O is the centre of the circle and PM = QN.

To Prove: DPOQ is an isosceles triangle.

Construction: OM and ON are joined.

Proof:

       Statements                                 Reasons

1.   ∠OMN = ∠ONM --------> Base angles of an isosceles DOMN (OM = ON)

2.   ∠OMP = ∠ONQ --------> Supplementary angles of equal angles ∠OMN =                                                      ∠ONM (Statement 1)

3.   In DOMP and DONQ

i.        OM = ON (S) ---------> Radii of same circle

ii.       āˆ OMP = ∠ONQ (A) ----------> From statement 2

iii.     PM = QN (S) -----------> By given

4.   DOMP ≅ DONQ -------------> By SAS axiom

5.   OP = OQ -------------> Corresponding sides of ≅ triangles.

6.   DPOQ is an isosceles triangle --------> From statement 5.

                                                                                           Proved.

 

Example 5: In the fugure, chords AB and CD intersect at M. If OM is the bisector of ∠BMD, prove that AB = CD.

Example 5: In the fugure, chords AB and CD intersect at M. If OM is the bisector of ∠BMD, prove that AB = CD.

Solution:

Given: OM is the bisector of ∠BMD.

To Prove: AB = CD.

Construction: OX⊄AB and OY⊄CD are drawn.

Proof:

       Statements                                 Reasons

1.    In DOMX and DOMY

i.        OM = OM (S) ---------> Common side

ii.       āˆ OMX = ∠OMY (A) -------> Being OM a bisector of ∠BMD (given)

iii.     āˆ MXO = ∠MYO (A) -------> Both right angles.

2.    DOMX ≅ DOMY -------------> By SAA axiom

3.    OX = OY -------------> Corresponding sides of ≅ triangles.

4.    AB = CD ------> Chords equidistant from centre of a circle are equal.

                                                                                                     Proved.

 

You can comment your questions or problems regarding chords and circle theorems on chords here.


0 comments: